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Abstract—In this study, the steady one-dimensional heat transfer process in a chemical substance, at 

rest in a vessel, involving branched-chain thermal reaction under generalized Arrhenius reaction-rate 

law is revisited. Two distinct boundary conditions are considered; constant surface temperature and 

Newton cooling on surface. The temperature equation and the specified boundary conditions are 

transformed into dimensionless forms for cartesian, cylindrical and spherical geometries. The 

developed non-linear equation is reduced to linear problem by assuming that the generalized heat 

generation term depends only on the maximum central dimensionless temperature. The resulting 

equations are then integrated analytically using standard techniques. The simplified yet accurate 

solutions obtained produces expressions for criticality condition and transition (disappearance of 

criticality). Comparison of present analytical expressions is in agreement with the limiting case of 

Arrhenius reaction-rate law. The analytical expressions obtained for criticality and transition conditions 

are shown graphically and discussed in detail for various parameters of interest.  
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——————————      —————————— 

 

1. Introduction    
It is established in the literature (see [3], [12], 

[25]) that the dimensionless temperature 

formulation in combustion theory exists in two 

alternative dimensionless forms described as  

 Case  1 ∶  𝜙 =
(𝑇 − 𝑇𝑎)𝐸

𝑅𝑇𝑎
,                                    

  Arrhenius  term = exp (
𝜙

1+𝛽𝜙
)  and      (1) 

  

Case 2 ∶  𝜃 =
𝑅𝑇

𝐸
(  or =

𝑇

𝑇𝑎
),                          

Arrhenius term = exp (−
1

𝜃
)                          

· (or = exp (−
1

𝛽𝜃
)).     (2) 

 The two cases of nondimensionalization 

featured in mechanism of thermal theories of 

heat generation by chemical reaction, 

isothermal reacting flows or branched-chain 

theories as well as branched-chain thermal 

reaction. In these cicumstances the 

determination of critical and transitional values 

for thermal reaction problems is often of 

considerable interest. Accordingly, the 

emerging dimensionless measure here is the 

parameter 𝛽 = 𝑅𝑇𝑎/𝐸 . Furthermore, critical 

and transitional values for branched-chain 

thermal reactions in physical coordinates is 

quite common and may be obtained from results 

generated.  

In this context, the dimensionless form 
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expressed in equation (1) has been extensively 

used to analysis combustible materials which 

takes account of thermal explosion and 

disapprarance of critical values for spatially 

distributed systems and unsteady scenarios. The 

earliest studies on the exact solution in the limit 

of 𝛽 = 0 for spatially distributed models are 

the milestone papers by Frank-Kamenetskii 

[12] and Semenov [25]. Exact solutions were 

also obtained by Reddy [23] and Zeldovich et 

al. [30] under realistic assumptions while 

approximate solutions also exist (Boddington et 

al. [6], (Boddington et al. [7], (Boddington et al. 

[8] Makinde and Osalusi [14], Mustapha and 

Khaled [15], Okoya [16] and Okoya [20] ). The 

problem of transient variation of temperature in 

reactor using equation (1) has been discussed 

under physically reasonable conditions by 

many researchers including Adegbie [1], Ayeni 

et al. [4], Luo et al. [13], Okoya [17], [18], [19]. 

It is note worthy that the dimensionless form of 

equation (2) has received little or no attention 

partly due to the advantage that the exponential 

heat source term allow for series approximation 

(see [27] for an example). However, 

considerable amount of qualitative information 

can be deduced when constant surface 

temperature are employed at the surface of the 

geometries. A steady state thermal explosion 

model was formulated under some realistic 

assumptions and solved employing the 

technique of upper and lower solutions by El-

Sayed [9], [10], [11] and Shouman [26]. 

Shouman and Donaldson [27] as well as Adler 

[3] complemented the earlier researchers by 

obtaining series solutions and perturbation 

series expansion, respectively. In another 

important paper, Ponzio et al. [22] conducted 

experimental results, theoretical basis and 

generated a formular for prediction of ignition. 

Recently, Adebowale [2] studied an extended 

model using analytical technique with 

allowable dimensionless maximum 

temperature in the material. Although basic 

research on steady state thermal explosion 

using equation (2) have been conducted, 

however, the vast applicability of branched-

chain thermal reactions in handling and storage 

of spontaneous exothermic reactions and 

materials suggests the need for further 

investigation. For practical purposes we 

investigate a particular problem arising from 

branched-chain thermal reaction using 

expression in equation (2) and subject to two 

different boundary conditions.  

Therefore, this paper attempts to study 

approximate analytical solutions to the 

equations governing the heat transport process 

in a combustible mixture involving branched-

chain thermal reaction at rest in a channel, 

cylinder and sphere geometries. The solutions 

for the dimensionless temperature distribution 

using the expression in (2) for each of the 

aforementioned geometries are presented and 

discussed. The effects of dimensionless 

ambient temperature, constant surface 

temperature and Newton cooling boundary 

conditions on the critical condition for 

explosion and extinction are analytically and 

numerically studied. Comparisons with known 

results in the literature is also carried out. The 

obtained results improve, complement and 

extend many results on branched-chain thermal 

explosion theory.   

 

2. Mathematical problem formulation  
Assuming that a combustible material at rest 

without reactant consumption is enclosed in a 

vessel. Such that an exothermic reaction based 

on the mixture of oxygen-acetylene and 

oxygen-hydrogen systems occur within the 

vessel under constant thermal initiation. No 

terms were added to describe the diffusion of 

the particles in line with the termination 

reaction adopted by [25]. By consideration of 

chemical kinetic and energy conservation 

equations, the generalized Arrhenius rate law 

for reaction branched-chain rate is assumed. It 

is also assumed that the temterature distribution 

is in a steady state. The equation of energy in 

the adiabatic isobaric system governing the heat 

flow for one-dimensional problem is given by 
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(see [1], [17], [18], [19], [24], [28], [29], [30])  

𝐾∇2𝑇 + 𝛼𝑄0 (
𝜅𝑇

ℏ𝜈
)
𝑚

(
𝑇 − 𝑇𝑎
𝛼

)
𝑛

exp (−
𝐸

𝑅𝑇
) 

              +𝛼𝐴 = 0. (3) 

Where the first term is diffusion of 

temperature, the second term indicates the 

chain branching heat production and the third 

term is the chain initiation.  
Two relevant boundary conditions are 

considered below: 

Model 1: Constant surface temperature at the 

wall  

𝑇(𝑟 = ±𝑏) = 𝑇𝑠,     and  (4) 

 

Model 2: Newton cooling at the wall  

𝐾
𝑑𝑇

𝑑𝑟
(𝑟 = ±𝑏) = −𝐻(𝑇𝑠 − 𝑇𝑎). (5) 

 

 The boundary value problem formulations 

under these conditions is symmetric and this 

scenario was important for obtaining closed-

form solution. Based on the scaling in the 

nomenclature, the dimensionless nonlinear 

equation and the associated boundary 

conditions are expressed in the form  

𝑑2𝜃

𝑑𝑟2
+
𝑗

𝑟

𝑑𝜃

𝑑𝑟
+ 𝛿𝜃𝑚 (

𝜃

𝛽
− 1)

𝑛

exp (−
1

𝜃
)          

                        +𝜖 = 0, (6)  

𝜃(𝑥 = 1) = 𝜃𝑠, and  
𝑑𝜃

𝑑𝑥
(𝑥 = 0);               

 𝜃(0) = 𝜃𝑚𝑎𝑥 , due  to  symmetry  BC. (7) 

 

 and  

 
𝑑𝜃

𝑑𝑥
(𝑥 = 1) = −𝐵𝑖(𝜃𝑠 − 𝜃𝑎), 𝑎𝑛𝑑                

 
𝑑𝜃

𝑑𝑥
(𝑥 = 0);  𝜃(0) = 𝜃𝑚𝑎𝑥 ,                                    

  due  to  symmetry  BC . (8) 

  

 Equations (6) - (8) cannot be solved 

analytically for 𝜃 due to the nonlinearity of the 

heat source term. However, simplifying 

assumption can be made on the source term to 

make the differential equation (6) trackable. In 

accordance with Shouman [26], it is assumed 

that the generalized heat generation source term 

is dependent only on the maximum central 

dimensionless temperature. In this wise, the 

differential equation (6) reduces to  

𝑑2𝜃

𝑑𝑟2
+
𝑗

𝑟

𝑑𝜃

𝑑𝑟
+ 𝛿𝜃𝑚𝑎𝑥

𝑚 (
𝜃𝑚𝑎𝑥
𝛽

− 1)
𝑛

                    

            · exp (−
1

𝜃𝑚𝑎𝑥
) + 𝜖 = 0. (9) 

 It is worth noting that 𝜃𝑚𝑎𝑥 is unknown at this 

stage but it can be assumed to be a constant.      

 

2.1 Special models    
For the purpose of comparison, the classical 

thermal equation of [27] is a special case of our 

model equation (6) if 𝜖 = 𝑚 = 𝑛 = 0 . 

Furthermore, the obtained classical thermal 

equation in [26] is a limiting scenario of the 

model equation (6) when 𝜖 = 𝑚 = 𝑛 = 0 and 

simultaneously the problem reduces to that 

studied by [3] for 𝑖 = 0 . The corresponding 

classical thermal equation (3) for 𝐴 = 𝑛 = 0 

was investigated by [8] and in [6] ( 𝑚 =
0  and  𝑚 = 1/2), [11] (𝑚 = −1), [16] (𝑖 =
0  and  𝑚 = −2). Equation (3) for branched-

chain thermal reaction was originally 

formulated by [20] (𝑖 = 0) and [24] (𝑖 = 1). 

 

2.2 Phenomenological models    
We can directly integrate equation (9) twice, 

applying the boundary condition 7 (b) (or 8 (b)) 

and after some algebra the solution of the 

equation (9) becomes  

𝜃 = 𝜃𝑚𝑎𝑥 −
𝑥2

2(𝑗+1)
  

· [𝛿𝜃𝑚𝑎𝑥
𝑚 (

𝜃𝑚𝑎𝑥

𝛽
− 1)

𝑛

exp (−
1

𝜃𝑚𝑎𝑥
) − 𝜖]. (10) 

 Next, we shall consider two sets of boundary 

conditions in order to investigate the criticality 

and transition of 𝜃𝑠  and 𝜃𝑚𝑎𝑥 . Firstly, we 

investigate the setup in case 1 where the surface 

temperature is set to a constant value and 

follow-up with the second case where a non-
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zero wall thermal flux condition is prescribed.  

 

3. Case study 1: Constant surface 

temperature  
Applying the boundary condition (7a) to the 

solution (10), we get  

𝜃𝑠 = 𝜃(1) = 𝜃𝑚𝑎𝑥 −
1

2(𝑗+1)
  

· [𝛿𝜃𝑚𝑎𝑥
𝑚 (

𝜃𝑚𝑎𝑥

𝛽
− 1)

𝑛

exp (−
1

𝜃𝑚𝑎𝑥
) − 𝜖]. (11) 

The nature of the temperature profile is 

obtained by studying equations (10) and (11) 

which can be combined to result in the 

form 
𝜃𝑚𝑎𝑥−𝜃

𝜃𝑚𝑎𝑥−𝜃𝑠
= 𝑥2, (12) 

 

which produces parabolic distribution of 

temperature for all geometries, activation 

energy parameter and initiation rate constant.  

 Next we investigate the critical condition for 

equation (11). The mathematical expression for 

criticality is 𝑑𝛿/𝑑𝜃𝑚𝑎𝑥 = 0  and eliminating 

𝛿𝑐𝑟  from the result, we can find the final 

expression in the following form  

(
1 − [𝑚 + 𝑛]

𝛽
)𝜃𝑚𝑎𝑥 𝑐𝑟

3                                       

+[𝑚 −
1

𝛽
− 1 +

𝑚 + 𝑛

𝛽
(𝜃𝑠 𝑐𝑟 −

𝜖

2(𝑗 + 1)
)]      

· 𝜃𝑚𝑎𝑥 𝑐𝑟
2 + [1 + (𝑚 −

1

𝛽
) (

𝜖

2(𝑗 + 1)
− 𝜃𝑠 𝑐𝑟)] 

· 𝜃𝑚𝑎𝑥 𝑐𝑟 +
𝜖

2(𝑗+1)
− 𝜃𝑠 𝑐𝑟 = 0. (13) 

  Two special cases can be deduced from 

model equation (13) which have closed-form 

solutions for criticality and transition while the 

third case is handled numerically.    

 

3.1 Model 1  

(a) 𝜷 → ∞ and 𝝐 = 𝟎 

The simplest model available from equation 

(13) is when 𝛽 = 1/𝜖 → ∞ and this scenario 

was studied in [2]. Here, we give a short review 

of the results for comparison purposes. With 

this choice of 𝛽 → ∞  (i.e. very small 

activation energies) and 𝜖  = 0 (absence of 

initiation rate constant) results in the process of 

purely thermal reaction and this leads to the 

problem of finding the two roots of  

(𝑚 − 1)𝜃𝑚𝑎𝑥 𝑐𝑟
2 + (1 −𝑚𝜃𝑠 𝑐𝑟)𝜃𝑚𝑎𝑥 𝑐𝑟 −

𝜃𝑠 𝑐𝑟 = 0 (14) 

 

Using the above equation (14) one can easily 

calculate 𝜃𝑚𝑎𝑥 𝑐𝑟 , 𝜃𝑚𝑎𝑥 𝑡𝑟 , 𝜃𝑠 𝑐𝑟  and 𝜃𝑠 𝑡𝑟  as 

functions of 𝑚. Solving the resulting quadratic 

equation simplifies to the thermal explosion and 

extinction temperature,  

𝜃𝑚𝑎𝑥 𝑐𝑟 =
(1−𝑚𝜃𝑠 𝑐𝑟)±√(1−𝑚𝜃𝑠 𝑐𝑟)2−4(1−𝑚)𝜃𝑠 𝑐𝑟

2(1−𝑚)
,

𝑚 ≠ 1, (15) 

 

where the solutions with the minus as well as 

plus signs before the square root correspond to 

the dimensionless thermal explosion and 

extinction, respectively. It is evident that the 

two curves merge into one transition point (i.e. 

the discriminant is zero), this point is often 

called the disappearance of criticality, when   

(1 − 𝑚𝜃𝑠 𝑡𝑟)
2 − 4(1 − 𝑚)𝜃𝑠 𝑡𝑟 = 0. (16) 

 

The above equation (16) yields  

𝜃𝑠 𝑡𝑟 = {

1/4     𝑚 = 0,

2−𝑚−2√1−𝑚

𝑚2     𝑚 ≠ 0.
 (17) 

 

and equation (15) reduces to  

𝜃𝑚𝑎𝑥 𝑡𝑟 =
1−𝑚𝜃𝑠 𝑡𝑟

2(1−𝑚)
,   𝑚 ≠ 1. (18) 

 

Simplifying equation (18) using equation (17) 

result in  

𝜃𝑚𝑎𝑥 𝑡𝑟 =

{
 

 
1

2
    𝑚 = 0,

𝑚−1+√1−𝑚)

𝑚(1−𝑚)
    𝑚 ≠ 1.

 (19) 

 

It is easy to show from equation (19b) in the 

limit of 𝑚 → 0  that applying L’hospital rule 

corresponds to equation (19a). As 𝑚 = 0 

(Arrhenius case; 𝜃𝑠 𝑡𝑟 = 1/4 while 𝜃𝑚𝑎𝑥 𝑡𝑟 =
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0.5) our results reduce to that given by [26] and 

for 𝜃𝑠 𝑡𝑟 = 0  the results reduces to [12] 

(𝜃𝑚𝑎𝑥 𝑡𝑟 = 0.5).  

 

(b) 𝒎+ 𝒏 = 𝟏 

We now consider the more interesting and 

general case in which the process is controlled 

by branched-chain thermal reaction. If 𝑚 +
𝑛 = 1 in equation (13) then the polynomial of 

degree three reduces to a quadratic equation that 

is amendable to closed-form solution. This 

leads to the problem of finding the two roots of:  

[𝑚 −
1

𝛽
− 1 +

1

𝛽
(𝜃𝑠 𝑐𝑟 −

𝜖

2(𝑗 + 1)
)] 𝜃𝑚𝑎𝑥 𝑐𝑟

2  

+[1 + (𝑚 −
1

𝛽
) (

𝜖

2(𝑗 + 1)
− 𝜃𝑠 𝑐𝑟)] 𝜃𝑚𝑎𝑥 𝑐𝑟 

    

  +
𝜖

2(𝑗+1)
− 𝜃𝑠 𝑐𝑟 = 0. (20) 

 

 Clearly, the solution of equation (20) is  

𝜃𝑚𝑎𝑥 𝑐𝑟 =

−[(𝑚−1/𝛽)𝑃+1]±√{(𝑚−1/𝛽)𝑃+1}2−4(𝑚−1/𝛽−1−𝑃/𝛽)𝑃

2[𝑚−1/𝛽−1−𝑃/𝛽]
,    

                                  (21) 

where 𝑃(𝜖, 𝑗, 𝜃𝑠 𝑐𝑟) = 𝜖/2(𝑗 + 1) − 𝜃𝑠 𝑐𝑟 . For 

the prevalent case, 𝑚 + 𝑛 = 1 , the negative 

sign in equation (21) corresponds to thermal 

explosion while the positive sign represents 

thermal extinction.  

  At transition point where the thermal 

explosion curve and thermal extinction curve 

coincides (i.e. disappearance of criticality) then 

satisfies  

𝜃𝑚𝑎𝑥 𝑡𝑟 =
[(𝑚−

1

𝛽
){

𝜖

2(𝑗+1)
−𝜃𝑠 𝑡𝑟}+1]

2[1−𝑚+
1

𝛽
+
1

𝛽
{

𝜖

2(𝑗+1)
−𝜃𝑠 𝑡𝑟}]

, (22) 

while  

𝜃𝑠 𝑡𝑟 =
𝜖

2(𝑗+1)
+
2−𝑚+

1

𝛽
−2√1−𝑚

(𝑚−
1

𝛽
)
2
+
4

𝛽

. (23) 

Hence, 𝜃𝑚𝑎𝑥 𝑡𝑟 in equation (22) is reduced to  

𝜃𝑚𝑎𝑥 𝑡𝑟 =

(𝑚−
1

𝛽
)
2
+
4

𝛽
−(𝑚−

1

𝛽
)(2−𝑚+

1

𝛽
−2√1−𝑚)

2[{(𝑚−
1

𝛽
)
2
+
4

𝛽
}(1−𝑚+

1

𝛽
)−

1

𝛽
(2−𝑚+

1

𝛽
−2√1−𝑚)]

. (24) 

It is note worthy that 𝜃𝑚𝑎𝑥 𝑡𝑟 in equation (24) 

does not depend on initiation rate constant, 𝜖 

and the geometric factor, 𝑗  whereas the 

opposite is the case of 𝜃𝑠 𝑡𝑟 in equation (23).  

Equation (24) or (23) for 𝛽 → ∞  and 𝜖 = 0 

reduces to the known results for the process of 

purely thermal explosion in equation (19) or 

(17). Therefore, equation (13) describes 

branched-chain thermal behaviour well over a 

fairly wide range of parameters.  

 

(c) Numerical solution for 𝒎,𝒏 ∈ 𝕽 

Unlike the previous problems, we cannot obtain 

exact solutions outside these ranges of 

parameters. The only feasible approach is to use 

computational analysis for the branched-chain 

thermal reaction problem defined in equation 

(13). In this study, the numerical techniques for 

finding roots of a polynomial of degree five 

developed by [21] was adopted for equation 

(13) on Maple 17 software system for various 

values of 𝜃𝑠 when other parameters are fixed. 

Since numerical methods are employed on 

equation (13) with three roots, one might expect 

errors in the choice of two relevant roots. For 

our investigation, we have employed the 

following parameter values except where stated 

as varying: 𝑚 = 0.3, 𝑛 = 2, 𝑗 = 1, 𝐵𝑖 = 𝛽 =
50 and 𝜖 = 1. In order to validate the results of 

the numerical computation, it is imperative to 

compare the numerical results with the exact 

solutions (23) and (24). For the established case 

of 𝑚 + 𝑛 = 1 , the results of the present 

numerical calculations are tabulated against the 

exact solution in Table 1. Evidently, a very 

good agreement between the results was 

observed, which confirms the validity of the 

numerical approach.    
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TABLE 1 

Comparison of exact solutions of 𝜃𝑚𝑎𝑥 𝑡𝑟 and 𝜃𝑠 𝑡𝑟 with numerics when 𝜖 = 10, 𝛽 = 50 and 𝑗 =
1. 

  

      𝜃𝑚𝑎𝑥 𝑡𝑟   𝜃𝑠 𝑡𝑟  

 𝑚   𝑛   Exact   Present   Rel. Error   Exact   Present   Rel. Error 

 -2.0   3.0   0.21043546   0.21044525   4.65𝑋10−5%   2.63361657   2.63361657   0 %  

0.0   1.0   0.49504951   0.49507433   5.01𝑋10−5%   2.74875622   2.74875622   0 %  

0.25   0.75   0.61123745   0.61127375   5.39𝑋10−5%   2.78554697   2.78554697   0 %  

0.5   0.5   0.81492500   0.81494868   2.91𝑋10−5%  2.84080682   2.84080682   0 %  

Now, we turn our attention to the profile of 

𝜃𝑚𝑎𝑥 𝑐𝑟 versus 𝜃𝑠 𝑐𝑟 as a function of 𝑛, 𝑚, 𝛽, 

𝜖  and 𝑗  so as to get physical insight. The 

results obtained by numerical computation are 

presented on variation of the dimensionless 

critical peak temperature, 𝜃𝑚𝑎𝑥 𝑐𝑟  against the 

dimensionless critical surface temperature 𝜃𝑠 𝑐𝑟 
is displayed in Figures 1 - 5 for three values 

each of 𝜖, 𝛽, 𝑗, 𝑚 and 𝑛.  

 

 
   

Figure 1: Solution curves of 𝜃𝑚𝑎𝑥 𝑐𝑟(𝜃𝑠 𝑐𝑟) for 

various reaction order 𝑛 as labelled.    

 

 
Figure 2: Solution plots of 𝜃𝑚𝑎𝑥 𝑐𝑟 on 𝜃𝑠 𝑐𝑟 
for three values of initiation parameter, 𝜖.    

 

The results presented in Figures 1 - 5 show the 

influence of 𝜖, 𝛽, 𝑗, 𝑚, 𝑛 on 𝜃𝑚𝑎𝑥 𝑐𝑟 against 

𝜃𝑠 𝑐𝑟. Four intructive properties are revealed for 

the process of branched-chain thermal reaction:  

(i) It is evident that the dependence of 𝜃𝑚𝑎𝑥 𝑐𝑟 
on 𝜃𝑠 𝑐𝑟  is continuous for various plots in 

Figures 1 - 5.  

(ii) It can be seen that as 𝜖, 𝛽 and 𝑚 increase 

the lower branch of the plots corresponding to 

thermal explosion increases while the higher 

branch of the plots decrease. The opposite 

behaviour is observed when 𝑗 and 𝑛 increase. 

(iii) Also, it is shown that as 𝑛 increase, the 

area under the curves corresponding to the 

critical region decrease while the increase in the 
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parameters 𝜖 , 𝛽  and 𝑚  show the critical 

region increase. It is found that the area under 

the curves corresponding to the critical region 

for each geometry are in the order  

 Area 𝑐𝑟( sphere ) <  Area 𝑐𝑟( cylinder )     

                       <  Area 𝑐𝑟( slab ) 

(iv) We noticed that in the graphical 

presentation of these results (Figures 1-5), 

discussion at transition is elusive. The result of 

the transitional values for the problem are 

appropriate in tabular form in order to capture 

the qualitative properties. With this in mind, 

Table 2 exhibit the dependence of emerging 

parameters at transition.  

   

 

 
Figure 3: Plots of dependence of 𝜃𝑚𝑎𝑥 𝑐𝑟 

versus 𝜃𝑠 𝑐𝑟 for values of activation energy 

parameter, 𝛽.    

 

 
Figure 4: Graphical representation of 𝜃𝑚𝑎𝑥 𝑐𝑟 

against 𝜃𝑠 𝑐𝑟 for systems of differing 

geometries, 𝑗.    

 
Figure 5: Behaviour of 𝜃𝑚𝑎𝑥 𝑐𝑟(𝜃𝑠 𝑐𝑟) for 

different values of numerical exponent, 𝑚.   
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TABLE 2 

The transitional values of branched-chain 

thermal mechanisms deduced from the above 

figures. 

  

  𝜖   𝛽   𝑗   𝑚   𝑛   𝜃𝑚𝑎𝑥 𝑡𝑟   𝜃𝑠 𝑡𝑟  

 0.001           0.6281129   0.2941166  

1   50   1   0.3   2   0.6281129   0.5416165  

5           0.6281524   0.5416165  

   5         0.4993742   0.5093589  

1   50   1  0.3   2   0.6281129   0.5416166  

  500         0.6483661   0.5459437  

     0       0.6281129   0.7916166  

1   50   1   0.3   2   0.6281129   0.5416166  

    2       0.6281058   0.4582832  

       -2     0.2107605   0.3837354  

1   50   1   0   2   0.4903297   0.4975485  

      05     0.7798154   0.5843766  

         2   0.6281129   0.5416165  

1   50   1   0.3   10  0.5625877   0.5260944  

        20  0.5098191   0.5117865  

  

 

 

 The first block of rows of the table indicates 

that as 𝜖 increases the 𝜃𝑚𝑎𝑥 𝑡𝑟 remains almost 

constant in the range of values whereas there is 

small increase in𝜃𝑠 𝑡𝑟 but it is asymptotic. This 

is to be expected since in practice, the parameter 

𝜖  is small and an increase in 𝜖  indicates the 

effect of initiation of radicals becoming less 

significant. The next block of rows of the table 

shows the influence of 𝛽  at transition. We 

observe that when 𝛽  increased, both 𝜃𝑚𝑎𝑥 𝑡𝑟 

and 𝜃𝑠 𝑡𝑟 increase. It is observed from the third 

block of rows that as 𝑗 increases the 𝜃𝑚𝑎𝑥 𝑡𝑟 

remains almost constant while the 𝜃𝑠 𝑡𝑟 

decreases. The fourth (or last) block of rows 

reveals that as 𝑚 (or 𝑛) increases, there is a 

tremendous increase (or decrease) in both 

𝜃𝑚𝑎𝑥 𝑡𝑟 and 𝜃𝑠 𝑡𝑟.  

 Similarly, the second boundary condition can 

be discussed in an equally simple manner.  

 

4. Case study 2: Convective cooling  

Using the convectionally cooled boundary 

condition (8) to the solution (10), we obtain 

𝜃𝑎 = 𝜃𝑠 −
1

(𝑗+1)𝐵𝑖
 

·[𝛿𝜃𝑚𝑎𝑥
𝑚 (

𝜃𝑚𝑎𝑥

𝛽
− 1)

𝑛

exp (−
1

𝜃𝑚𝑎𝑥
) − 𝜖]. (25) 

 

Eliminating 𝜃𝑠  by substituting equation (11) 

into equation (25) gives  

𝜃𝑎 = 𝜃𝑚𝑎𝑥 −
(2+𝐵𝑖)

2(𝑗+1)𝐵𝑖
  

[𝛿𝜃𝑚𝑎𝑥
𝑚 (

𝜃𝑚𝑎𝑥

𝛽
− 1)

𝑛

exp (−
1

𝜃𝑚𝑎𝑥
) − 𝜖]. (26) 

 

The critical condition for thermal explosion 

(maximum )and extinction (minimum) can be 

obtained from equation (26) by setting 𝑑𝛿/
𝑑𝜃𝑚𝑎𝑥 = 0, which gives 

 
2(𝑗 + 1)𝐵𝑖

(2 + 𝐵𝑖)
= 𝛿𝑐𝑟𝜃𝑚𝑎𝑥 𝑐𝑟

𝑚−2                                       

· (
𝜃𝑚𝑎𝑥 𝑐𝑟
𝛽

− 1)
𝑛

exp (−
1

𝜃𝑚𝑎𝑥 𝑐𝑟
)        

· (𝑚𝜃𝑚𝑎𝑥𝑐𝑟 +
𝑛𝜃𝑚𝑎𝑥 𝑐𝑟

2

𝛽(𝜃𝑚𝑎𝑥 𝑐𝑟/𝛽 − 1)
+ 1) 

 (27) 

Utilizing equations (26) in equation (27), the 

critical dimensionless temperature can be 

expressed in terms of 𝜃𝑎 as  

1 =

(𝜃𝑚𝑎𝑥 𝑐𝑟−𝜃𝑎+
𝜖(2+𝐵𝑖)

2(𝑗+1)𝐵𝑖
)(𝑚𝜃𝑚𝑎𝑥 𝑐𝑟+𝑛

𝜃𝑚𝑎𝑥 𝑐𝑟
2

𝛽(𝜃𝑚𝑎𝑥 𝑐𝑟/𝛽−1)
+1)

𝜃𝑚𝑎𝑥 𝑐𝑟
2 .    

 (28) 

Expanding equation (28) and collecting 

coefficients of powers of 𝜃𝑚𝑎𝑥 𝑐𝑟 gives  

(
1 − [𝑚 + 𝑛]

𝛽
)𝜃𝑚𝑎𝑥 𝑐𝑟

3                                         

+[𝑚 −
1

𝛽
− 1 +

𝑚 + 𝑛

𝛽
(𝜃𝑎 −

𝜖(2 + 𝐵𝑖)

2(𝑗 + 1)𝐵𝑖
)] 

· 𝜃𝑚𝑎𝑥 𝑐𝑟
2                                                                

+[1 + (𝑚 −
1

𝛽
)(

𝜖(2 + 𝐵𝑖)

2(𝑗 + 1)𝐵𝑖
− 𝜃𝑎)]              
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    · 𝜃𝑚𝑎𝑥 𝑐𝑟 +
𝜖(2+𝐵𝑖)

2(𝑗+1)𝐵𝑖
− 𝜃𝑎 = 0. (29) 

 

The equivalent of equation (29) in terms of 𝜃𝑠 
can be obtained as follows: substituting 

equation (25) into equation (27) and carrying 

out the elementary simplification, we have  
2

𝐵𝑖+2
=

(𝜃𝑠 𝑐𝑟−𝜃𝑎+
𝜖

(𝑗+1)𝐵𝑖
)(𝑚𝜃𝑚𝑎𝑥 𝑐𝑟+𝑛

𝜃𝑚𝑎𝑥 𝑐𝑟
2

𝛽(𝜃𝑚𝑎𝑥 𝑐𝑟/𝛽−1)
+1)

𝜃𝑚𝑎𝑥 𝑐𝑟
2 .      

 (30) 

Eliminate 𝜃𝑎  by subtracting equation (30) 

from equation (28), we readily obtain  
𝐵𝑖

2+𝐵𝑖
=

(𝜃𝑚𝑎𝑥 𝑐𝑟−𝜃𝑠 𝑐𝑟+
𝜖

2(𝑗+1)
)(𝑚𝜃𝑚𝑎𝑥 𝑐𝑟+𝑛

𝜃𝑚𝑎𝑥 𝑐𝑟
2

𝛽(𝜃𝑚𝑎𝑥 𝑐𝑟/𝛽−1)
+1)

𝜃𝑚𝑎𝑥 𝑐𝑟
2 ,  

 (31) 

which after rearranging corresponds to 

(
𝐵𝑖

2+𝐵𝑖
−[𝑚+𝑛]

𝛽
)𝜃𝑚𝑎𝑥 𝑐𝑟

3  

+ [𝑚 −
1

𝛽
−

𝐵𝑖

2 + 𝐵𝑖
 +
𝑚 + 𝑛

𝛽

· (
𝜖

2(𝑗 + 1)
− 𝜃𝑠 𝑐𝑟)] 𝜃𝑚𝑎𝑥 𝑐𝑟

2   

 

+[1 + (𝑚 −
1

𝛽
) (

𝜖

2(𝑗 + 1)
− 𝜃𝑠 𝑐𝑟)] 𝜃𝑚𝑎𝑥 𝑐𝑟 

 

+
𝜖

2(𝑗+1)
− 𝜃𝑠 𝑐𝑟 = 0. (32) 

The setup described in the model equations (29) 

and (32) can be solved analytically for some 

special cases otherwise numerically. We shall 

start with analytical solution for two special 

cases.  

 

4.1 Model 2  

(a) 𝜷 = ∞ and 𝝐 = 𝟎 

This special model was investigated in [2]. 

Here, we give a short review of the results for 

completeness. Equations (29) and (32) as well 

as the assumption that 𝛽 = 1/𝜖 → ∞, reduce to  

 

(𝑚 − 1)𝜃𝑚𝑎𝑥 𝑐𝑟
2 + (1 −𝑚𝜃𝑎)𝜃𝑚𝑎𝑥 𝑐𝑟  

                              −𝜃𝑎 = 0, (33) 

 and  

(𝑚 −
𝐵𝑖

2 + 𝐵𝑖
) 𝜃𝑚𝑎𝑥 𝑐𝑟

2 + (1 −𝑚𝜃𝑠 𝑐𝑟)𝜃𝑚𝑎𝑥 𝑐𝑟 

                                            −𝜃𝑠 𝑐𝑟 = 0. (34) 

The dimensionless temperature values at 

criticality (negative sign for thermal explosion 

and positive sign for extinction) can be 

expressed as function of ambient and constant 

surface temperature by solving equations (33) 

and (34), respectively reduce to  

𝜃𝑚𝑎𝑥 𝑐𝑟

=
(1 −𝑚𝜃𝑎) ± √(1 − 𝑚𝜃𝑎)2 − 4(1 − 𝑚)𝜃𝑎

2(1 − 𝑚)
,   

𝑚 ≠ 1, (35) 

 and  

𝜃𝑚𝑎𝑥 𝑐𝑟  

 =
(1−𝑚𝜃𝑠 𝑐𝑟)±√(1−𝑚𝜃𝑠 𝑐𝑟)2−4(

𝐵𝑖

2+𝐵𝑖
−𝑚)𝜃𝑠 𝑐𝑟

2(
𝐵𝑖

2+𝐵𝑖
−𝑚)

, 

 

𝑚 ≠
𝐵𝑖

2+𝐵𝑖
. (36) 

 Substitution of equation (35) with the minus 

sign (explosion) into equation (34) obviously 

produces the surface temperature at explosion 

as a function of the ambient temperature i.e.  

𝜃𝑠 𝑐𝑟 =

4+2[2𝑚(𝑚−3)+𝐵𝑖(𝑚2−3𝑚+2)]𝜃𝑎+2𝑚
2𝐷1𝜃𝑎

2+𝐷2(𝜃𝑎;𝑚,𝐷1)

4(1−𝑚)2(2+𝐵𝑖)(1+
𝑚

2(1−𝑚)
{1−𝑚𝜃𝑎−√(1−𝑚𝜃𝑎)2−4(𝑚−1)𝜃𝑎})

, 

 (37) 

 where 𝐷1 = 2𝑚 + (𝑚 − 1)𝐵𝑖  and 𝐷2 =

(−4 + 2𝑚𝐷1𝜃𝑎)√(1 − 𝑚𝜃𝑎)2 − 4(𝑚 − 1)𝜃𝑎.  

 

It can be seen from equation (35) that at 

transition the discreminant is zero i.e.  

  

𝜃𝑎 = {

1/4     𝑚 = 0,

2−𝑚−2√1−𝑚

𝑚2     𝑚 ≠ 0.
 (38) 
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It is interesting to note that at transition, 𝜃𝑎 in 

equation (17) and 𝜃𝑎  in equation (38) are 

identical in the limit of 𝐵𝑖 → ∞. On appealing 

to equation (38), it is evident that equation (37) 

after some algebra reduces to the transitional 

dimensionless surface temperature for the 

branched-chain thermal reaction i.e.  

 𝜃𝑠 𝑡𝑟 =

{
 
 

 
 

4+𝐵𝑖

4(2+𝐵𝑖)
 𝑚 = 0,

8𝑚−8𝐵𝑖(1−𝑚)−4{2𝑚+𝐵𝑖(𝑚−2)}√1−𝑚

4(2+𝐵𝑖)𝑚2√1−𝑚
𝑚 ≠ 0, 1.

  

 (39) 

It is worth noting that the results for 𝑚 = 0 in 

equation (38) and (39) are obtained by applying 

L’Hospital rule twice and they correspond to 

the result in [26]. Evidently, the constant 

surface temperature scenario is equal to the 

convective scenario in the limit of 𝐵𝑖 → ∞ for 

which 𝜃𝑎  and 𝜃𝑠  are identical. A similar 

argument supports this well-known fact in [26]. 

It is also important to note that in the event with 

𝐵𝑖 → ∞ in equation (39) and 𝜃𝑠 𝑡𝑟 in equation 

(17) are identical establishing that in this special 

case the constant surface temperature and 

Newtonian convecting cooling at the walls are 

equivalent. Moreover, when 𝑚 + 𝑛 = 1  and 

𝑚 + 𝑛 = 𝐵𝑖/(2 + 𝐵𝑖)  in equations (29) and 

(32), respectively, scenarios which clearly 

reduces to special cases with analytical 

solutions, will be tackled in the next subsection. 

  

(b) 𝒎+ 𝒏 = 𝟏 and 𝒎+ 𝒏 = 𝑩𝒊/(𝟐 + 𝑩𝒊)  

 Firstly, as 𝑚+ 𝑛 = 1 , it is apparent 

that equation (29) for convective cooling is 

similar to equation (20) for constant surface 

temperature, if we replace P with 

𝐻(𝐵𝑖, 𝜖, 𝑗, 𝜃𝑠 𝑐𝑟) = 𝜖(2 + 𝐵𝑖)/[2𝐵𝑖(𝑗 + 1)] −
𝜃𝑎 . Hence, the results for criticality and 

transition for convective cooling case can be 

adapted in order to save space.  

Secondly, for 𝑚  and 𝑛  satisfying 𝑚 + 𝑛 =
𝐵𝑖/(2 + 𝐵𝑖), equation (32) permits the solution  

𝜃𝑚𝑎𝑥 𝑐𝑟 =

−[(𝑚−1/𝛽)𝑃+1]±√{1−(𝑚−1/𝛽)𝑃}2+4𝐵𝑖(1+𝑃/𝛽)/(2+𝐵𝑖)]𝑃

2[𝑚−1/𝛽−𝐵𝑖(1+𝑃/𝛽)/(2+𝐵𝑖)]
. 

 (40) 

 Proceeding in the usual manner, the 

transitional values for 𝜃𝑚𝑎𝑥  and 𝜃𝑠  for the 

convective cooling readily results in  

𝜃𝑚𝑎𝑥 𝑡𝑟 =
[(𝑚−

1

𝛽
){

𝜖

2(𝑗+1)
−𝜃𝑠 𝑡𝑟}+1]

2[
𝐵𝑖

2+𝐵𝑖
−𝑚+

1

𝛽
+

𝐵𝑖

(2+𝐵𝑖)𝛽
{

𝜖

2(𝑗+1)
−𝜃𝑠 𝑡𝑟}]

, (41) 

 

and  

𝜃𝑠 𝑡𝑟 =
𝜖

2(𝑗+1)
+

2𝐵𝑖

2+𝐵𝑖
−𝑚+

1

𝛽
−2√

𝐵𝑖

2+𝐵𝑖
(
𝐵𝑖

2+𝐵𝑖
−𝑚)

(𝑚−
1

𝛽
)
2
+

4𝐵𝑖

𝛽(2+𝐵𝑖)

. (42) 

 

If we substitute equation (42) into equation (41) 

and simplifying, then 𝜃𝑚𝑎𝑥 𝑡𝑟 is given by  

𝜃𝑚𝑎𝑥 𝑡𝑟 =

(𝑚−
1

𝛽
)
2
+
4

𝛽
−(𝑚−

1

𝛽
)(2−𝑚+

1

𝛽
−2√1−𝑚)

2[{(𝑚−
1

𝛽
)
2
+
4

𝛽
}(

𝐵𝑖

2+𝐵𝑖
−𝑚+

1

𝛽
)−

𝐵𝑖

𝛽(2+𝐵𝑖)
(2−𝑚+

1

𝛽
−2√1−𝑚)]

.  

 (43) 

Evidently, taking 𝐵𝑖 → ∞ , it follows that 

𝜃𝑚𝑎𝑥 𝑡𝑟  and 𝜃𝑠 𝑡𝑟  from equations (41) - (43) 

thereby reduce to equations (22) - (24), 

respectively.  

 Having now found 𝜃𝑚𝑎𝑥 𝑐𝑟  and 𝜃𝑠 𝑐𝑟  in 

subsections (a) and (b) for the parameter 

regions, the two special cases studied for the 

convective cooling are slightly restrictive. The 

focus of the next subsection is on parameter 

sensitivity using numerical computation in view 

of the fact that equation (32) cannot be further 

tackled analytically.  

 

(c) Numerical solution for 𝒎,𝒏 ∈ 𝕽  

Here we discuss the numerical solutions of 

equations (29) and (32). Firstly, we consider 

equation (32) and study the nature of the 

solution. It is worth noting that equation (32) is 

different from that given in equation (13) due to 

the term associated with the Biot number 𝐵𝑖. In 

fact, in the limit of 𝐵𝑖 → ∞ in equation (32), 

we would recover equation (13). The result for 

the convective boundary condition is different 
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from that of the constant surface temperature in 

scale but not in the purpose it serves. Since the 

effects of 𝑚 , 𝑛 , 𝛽 , 𝜖  and 𝑗  on the 

distributions of the criticality and transition of 

dimensionless temperature were reported early, 

we will look only at the effect of parameter 𝐵𝑖. 
The variation of 𝜃𝑚𝑎𝑥 𝑐𝑟 with the 𝜃𝑠 𝑐𝑟 for the 

branched-chain thermal explosion regime is 

displayed in Figure 6. It is evident that the 

dependence of 𝜃𝑚𝑎𝑥 𝑐𝑟  on 𝜃𝑠 𝑐𝑟  is continuous 

as portrayed in Figures 6. Also, The lower 

branch of the plot in Figure 6 represents thermal 

explosion and the higher branch of the graph 

represents extinction. The two branches 

coincides at one point (transition point) after 

which critical value disappears. In adition, the 

unstable plane decreases with increasing Biot 

number.  

 

 
    

Figure 6: Shape of 𝜃𝑚𝑎𝑥 𝑐𝑟 against 𝜃𝑠 𝑡𝑟 for 

three values of Biot number, 𝐵𝑖.  

  

 To show the effects of transitional values, the 

numerical study that follows focus on transition 

values for the convective case using equation 

(32). It covers the complete range of values for 

𝐵𝑖 which can vary from 0 to ∞ as contained in 

Table 3. The table provides an independent 

check on the convergence of the solutions to 

eight decimal places.  

 

TABLE 3 

The transitional values of branched-chain 

thermal mechanisms partly deduced from the 

Figure 6. 

  

  𝐵𝑖   𝜃𝑚𝑎𝑥 𝑡𝑟   𝜃𝑠 𝑡𝑟  

 0   8.61141234   8.86142000  

100   2.39844456   1.35093291  

101   0.78660349   0.61076463  

102   0.64343981   0.54836438  

105   0.62807920   0.54162330  

107   0.62806414   0.54161664  

109   0.62804586   0.54161657  

1010   0.62803641   0.54161657  

1011   0.62803778   0.54161657  

1012   0.62803778   0.54161657  

  

  

 It is revealed in Table 3 that as 𝐵𝑖 increases, 

𝜃𝑚𝑎𝑥 𝑡𝑟  and 𝜃𝑠 𝑡𝑟  decrease. It is worth noting 

that the solutions for both 𝜃𝑚𝑎𝑥 𝑡𝑟 and 𝜃𝑠 𝑡𝑟 in 

the limit of 𝐵𝑖 → ∞ for Table 3 agree with the 

corresponding solutions in the second block of 

rows in Table 2.  

 Secondly, we turn our attention on equation 

(29) for which 𝜃𝑚𝑎𝑥 𝑐𝑟 is a function of 𝜃𝑎. The 

general model given by equation (29) will be 

studied for regime of emerging parameters. In 

this case, we further present computational 

analysis of the branched-chain thermal reaction 

as portrayed in the Figures 7 - 11.  
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Figure 7: Solution curves of 𝜃𝑚𝑎𝑥 𝑐𝑟 (𝜃𝑎) for 

various reaction order 𝑛 as labelled.   

 

  
Figure 8: Graphs of 𝜃𝑚𝑎𝑥 𝑐𝑟 as a function 𝜃𝑎 

for three values of initiation parameter, 𝜖.    

 
Figure 9: Plot of 𝜃𝑚𝑎𝑥 𝑐𝑟 versus 𝜃𝑎 for 

various systems with values of activation 

energy parameter, 𝛽.    

 
Figure 10: Effect of 𝜃𝑚𝑎𝑥 𝑐𝑟 against 𝜃𝑎 for 

systems of differing geometries, 𝑗.    
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Figure 11: Variation of 𝜃𝑚𝑎𝑥 𝑐𝑟  with 𝜃𝑎  for 

different values of numerical exponent, 𝑚 

 

The results displayed in Figures 7 - 11 show the 

predicted variation of dimensionless critical 

peak temperature , 𝜃𝑚𝑎𝑥 𝑐𝑟  with respect to 

dimensionless ambient temperature, 𝜃𝑎  for 

various values of 𝜖 , 𝛽 , 𝑗 , 𝑚  and 𝑛 . The 

following properties can be deducted from 

Figures 6 - 11:  

 (i) It is clearly seen from Figures 6 - 11 that the 

dependence of 𝜃𝑚𝑎𝑥 𝑐𝑟  on 𝜃𝑎  is a continuous 

function.  

 (ii) The important features of the control 

parameters (lower branch of the plots 

corresponding to thermal explosion) in the 

present section is similar in result to that of the 

previous section.  

  (iii) Also, the parameter variation (area under 

the curves corresponding to the critical region) 

in the present section markedly reflect the same 

result as in the previous section. (iv) In order to 

better understand the transitional values for the 

problem a tabular presentation of the results in 

Figures 6 - 11 was generated using additional 

computations.  

Table 4 shows the results of the root finding of 

equation (29) in the form of 𝜃𝑚𝑎𝑥 𝑡𝑟  as a 

functions of 𝜃𝑎 for various values of 𝜖, 𝛽, 𝐵𝑖, 
𝑗, 𝑚 and 𝑛. 
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TABLE 4 

The transitional values of branched-chain thermal mechanisms deduced from Figures 7-11

.      

  𝜖   𝛽   𝐵𝑖   𝑗   𝑚   𝑛   𝜃𝑚𝑎𝑥 𝑡𝑟  𝜃𝑎 

 0.01             0.62803777  0.29421657 

1   50   50   1  0.3      2   0.62803777  0.55161657 

5             0.62803777  1.59161657 

   5           0.49928814  0.51935889 

1   50   50   1  0.3     2   0.62803777  0.55161657 

  500           0.64832006  0.55594374 

     5         0.62803777  0.64161657 

1   50   50   1  0.3     2   0.62803777  0.55161657 

   500          0.62803777  0.54262657 

       0       0.62803777  0.81161657 

1   50   50   1  0.3     2   0.62803777  0.55161657 

      2       0.62805750  0.46494991 

         -2     0.21071772  0.39373536 

1   50   50   1   0   2   0.49030736  0.50754855 

        05     0.77963159  0.59437663 

           2   0.62803777  0.55161657 

1   50   50   1  0.3    10   0.56253901  0.53609438 

          20   0.50979347  0.52178646 

  Table 4 illustrates the effect of different 

physical parameter of interest on the 

transitional values of the dimensionless central 

temperature, 𝜃𝑚𝑎𝑥 𝑡𝑟 and ambient temperature, 

𝜃𝑎 . The numerical exponent of the pre-

exponential factor (𝑚), dimensionless measure 

of the activation energy (𝛽) increase the value 

of 𝜃𝑚𝑎𝑥 𝑡𝑟  and 𝜃𝑎  whereas the value of 

branched-chain thermal reaction order ( 𝑛 ) 

decreases the value of 𝜃𝑚𝑎𝑥 𝑡𝑟  and 𝜃𝑎 . 

Furthermore, the initiation rate constant (𝜖) and 

Biot number (𝐵𝑖) did not have any effect on the 

𝜃𝑚𝑎𝑥 𝑡𝑟  while geometric factor marginally 

increase 𝜃𝑚𝑎𝑥 𝑡𝑟 . 𝜃𝑎  increases when the 

initiation rate constant ( 𝜖 ) increases but 𝜃𝑎 

decreases as Biot number (𝐵𝑖) and geometric 

factor (𝑗) increase.  

 

5. Conclusion    
In the present article, we have studied the steady 

state reaction involving branched-chain thermal 

systems and generalized Arrhenius kinetics 

using analytical and numerical methods with 

allowable dimensionless maximum 

temperature for the material source term. New 

exact analytical solutions for the two problems 

of constant surface temperature and convective 

cooling were studied for the infinite slab, 

infinite cylinder and sphere. Where there is 

common ground, agreement is excellent. We 

further implemented numerical investigation of 

the branched-chain thermal reaction. Hence, 

based on this analysis and the values of the 

dimensionless parameters investigated, we state 

the following:  

  1.  The behaviour of solutions for 

𝜃𝑚𝑎𝑥 𝑐𝑟(𝜃𝑠 𝑐𝑟)  for the dimensionless constant    

surface temperature and Newton cooling on the 

surface as well as 𝜃𝑚𝑎𝑥 𝑐𝑟(𝜃𝑎) for the Newton 

Cooling on the surface is similar but differ in 

magnitude.  

  2.  The results were validated for the 

dimensionless constant surface temperature and 

Newton cooling on the surface by comparing 

the classical analytical solutions with our 

solution when 𝑛 → 0, 𝐵𝑖 → ∞ and 𝜃𝑠 𝑡𝑟 → 0.  

International Journal of Scientific & Engineering Research Volume 13, Issue 4, April-2022 
ISSN 2229-5518 248

IJSER © 2022 
http://www.ijser.org

IJSER



  3.  The value of both 𝜃𝑚𝑎𝑥 𝑡𝑟  and 𝜃𝑠 𝑡𝑟 

depend strongly on the activation energy 

parameter 𝛽 , the numerical exponent of the 

pre-exponential factor 𝑚  and branched-chain 

thermal reaction order 𝑛.  

 4.  The profile for the variation of 𝜃𝑚𝑎𝑥 𝑐𝑟 

against the emerging parameters for the 

constant surface temperature and 

convectionally cooled boundary condition is 

similar in form but they are very dissimilar in 

scale.  

 5.  The numerical treatment is valid for 

arbitrary Biot number.  

 6.  The results obtained in [26] for the 

classical case (thermal reaction) under constat 

surface temperature and convectionally cooled 

boundary condition can be recovered easily 

when 𝑚, 𝑛, 𝜖 → 0.  

                        

 

NOMENCLATURE 

Alphabets 

 

𝐴   initiation rate which is assumed constant  

 during an explosion  

𝑏   half -width of the channel or radius  

𝐵𝐶   boundary condition  

𝐵𝑖   = 𝑏𝐻/𝐾, Biot number  

𝐶𝑝   heat capacity at constant pressure  

𝑗   = geometric factor equal to 0, 1 and 2 for  

 channel, cylinder and sphere, respectively  

𝐾   diffusion coefficient  

𝑚   numerical exponent of the pre-exponential  

 factor  

𝑛   branched-chain thermal reaction order 

𝑄0   mth order rate constant for branched-chain  

𝑄𝑓   energy released in the process per mole of  

 fuel consumed by the mixture  

𝑟   radial distance  

𝑅   Universal gas constant  

𝑇   temperature of the vessel  

𝑇𝑎   constant ambient temperature  

𝑇𝑠   constant surface temperature  

𝑥   dimensionless radial distance  

 

 

 

 

 

Greek Symbols 

𝛼   = 𝑄𝑓/(𝜌𝐶𝑝),  

𝛽   = 𝑅𝑇𝑎/𝐸 , dimensionless measure of the   

activation energy  

𝜖   = 𝑏2𝐴𝛼𝛽/(𝐷𝑇𝑎), initiation rate constant  

𝛿   = 𝛽𝐵0𝑏
2𝛼(𝜅𝑇𝑎/(𝛽𝜈ℏ))

𝑚(𝑇𝑎/𝛼)
𝑛/(𝐷𝑇𝑎) , 

Frank Kamenetskii parameter  

𝜃   = 𝑅𝑇/𝐸 , dimensionless temperature of the 

model vessel  

𝜃𝑎   = 𝑅𝑇𝑎/𝐸 , constant dimensionless ambient 

temperature  

𝜃𝑠   = 𝑅𝑠𝑇/𝐸 , constant dimensionless surface 

temperature  

ℏ   Planck’s number  

𝜈   vibration frequency  

𝜅   Boltzmann constant  

𝜌   density of the mixture  

 

   Subscripts and superscripts  

 

 𝑎   pertaining to ambient temperature  

cr   critical value  

ma

x  

 maximum  

s   surface  

tr   transitional  

    

 

 

 

    

 

References   

International Journal of Scientific & Engineering Research Volume 13, Issue 4, April-2022 
ISSN 2229-5518 249

IJSER © 2022 
http://www.ijser.org

IJSER



[1] K. S. Adegbie, “Thermal explosion in a 

combustible gas mixture with general 

Arrhenius reaction-rate laws: criticality and its 

disappearance”. Afrika Mathematika vol. 24, 

pp. 195-208, 2013.  

 

[2] F. B. Adebowale, “Analytical solutions of 

heat transfer problems with generalized 

Arrhenius reaction rate in three symmetric 

geometries”. M.Sc. thesis, Obafemi Awolowo 

University, Ile-Ife, Nigeria, 2022. 

 

[3] J. Adler, “Thermal explosion theory with 

Arrhenius kinetics: homogeneous and 

inhomogeneous media”. Proceedings of the 

Royal Society of London, A (1991), pp. 329-

335, 1991.  

 

[4]  R. O. Ayeni, M. A. Okedoye, K. S. 

Adegbie and S. S. Okoya, “Effect of heat loss 

on Ignition times in the theory of branched - 

chain explosions”. Journal of the Mathematical 

Association of Nigeria, vol. 30 no. 2A, pp. 52-

57, 2003.  

 

[5]  H. Biyadi, M. Er-Riani and K. Chetehouna 

K., “Hermite-Pade approximation approach to 

exothermic explosions with heat loss”. Annals 

of the University of Craiova, Mathematics and 

Computer Science Series, vol. 42, no. 1, pp. 

140-147, 2015.  

 

[6]  T. Boddington, C. G. Feng and P. Gray, 

“Thermal explosion, criticality and the 

disappearance of criticality in systems with 

distributed temperatures I. Arbitrary Biot 

number and general reaction-rate laws”. Proc. 

R. Soc. London A vol. 390, pp. 247-264, 1983.  

 

[7]  T. Boddington, C. G. Feng and P. Gray, 

“Thermal explosion, criticality and the 

disappearance of criticality in systems with 

distributed temperatures II. An asymptotic 

analysis of criticality at the extremes of Biot 

number (𝐵𝑖 → 0, 𝐵𝑖 → ∞) for general reaction 

rate-law”. Proc. R. Soc. London A, vol. 392, pp. 

301-322, 1984  

 

[8]  T. Boddington, C. G. Feng, Z.-M. Du, C.-

G Bai and P. Gray, “Thermal explosions, 

criticality and the disappearance of criticality in 

systems with distributed temperatures III. 

Asymptotic analysis of the disappearance of 

criticality (transition) at the extreme of small 

Biot number”. Proc. R. Soc. London A, vol. 

418, pp. 301-312, 1988.  

 

[9]  S. A. El-Sayed, “Ignition and transition 

conditions for inflammation and extinction for 

a first-order heterogeneous reaction”. J. Loss 

Prev. Process Ind. vol. 8, no. 4, pp. 237-243, 

1995.  

 

[10]  S. A. El-Sayed, “Critical and transition 

conditions of gaseous explosion”. J Loss Prev 

Process Ind., vol. 16, pp. 281-288, 2003.  

 

[11]  S. A. El-Sayed, “Thermal explosion of a 

reactive gas mixture at constant pressure for 

non-uniform and uniform temperature 

systems”. Defence Technology, 

https://doi.org/10.1016/j.dt.2021.06.009 2021  

 

[12]  D. A Frank- Kamenetskii, Diffusion and 

Heat Transfer in Chemical Kinetics. Plenum 

Press, New York, 1969.  

 

[13]  K-M Luo, K-T Lu and K-H Hu, “The 

critical condition and stability of exothermic 

chemical reaction in a non-isothermal reactor”. 

J. Loss Prev. Process Ind. vol. 10, no. 3, pp. 

141-150, 1997.  

 

[14]  O. D. Makinde and E. Osalusi, 

“Exothermic explosions in symmetric 

geometries: an exploitation of perturbation 

technique”. Rom. Journ. Phys., vol. 50, nos. 5–

6, pp. 621-625, 2005.  

 

[15]  E. Mustapha and C. Khaled, “On the 

Critical Behavior of Exothermic Explosions in 

Class A Geometries”. Mathematical Problems 

International Journal of Scientific & Engineering Research Volume 13, Issue 4, April-2022 
ISSN 2229-5518 250

IJSER © 2022 
http://www.ijser.org

IJSER

https://doi.org/10.1016/j.dt.2021.06.009


in Engineering, Hindawi Publishing 

Corporation, (Article ID 536056), pp. 1-14 hal-

00652740, 2011  

 

[16]  S. S. Okoya, “Reactive-diffusive 

equation with variable pre-exponential factor”. 

Mechanics Research Communications, vol. 31, 

pp. 263-267, 2004.  

 

[17]  S. S. Okoya, “Disappearance of criticality 

in a branched-chain thermal explosion with heat 

loss”. Combustion and Flame, vol. 144 , no. 1–

2, pp. 410-414, 2006.  

 

[18]  S. S. Okoya, “Ignition and transition 

conditions in the theory of combustion”, Ife 

Journal of Science, vol. 9, no. 1, pp. 51-54, 

2007.  

 

[19]  S. S. Okoya, “Ignition times for a 

branched-chain thermal explosion chemistry 

with heat loss”, Toxicological and 

Environmental Chemistry, vol. 91, no. 5, pp. 

905-910, 2009.  

 

[20]  S. S. Okoya, Criticality and 

disappearance of criticality for a branched-

chain thermal reaction with distributed 

temperature, Afrika Mathematika, vol. 24, no. 

4, pp. 465-476, 2013.  

 

[21]  S. I. Opadiran and S. S. Okoya, 

“Importance of convective boundary layer 

flows with inhomogeneous material properties 

under linear and quadratic boussinesq 

approximations around a horizontal cylinder”. 

Heliyon, vol. 7 pp. 1-13, e07074, 2021.  

 

[22]  A. Ponzio, S. Senthoorselvan, W. Yang 

and W. Blasiak, “Ignition of single coal 

particles in high-temperature oxidizers with 

various oxygen concentrations”, Fuel, vol. 87, 

pp. 974-987, 2008.  

 

[23]  P. D. Reddy, P. R. Amyotte and M. J. 

Pegg, “Effect of Inerts on layer ignition 

temperature of coal dust”, Combution and 

Flame, vol. 114, pp. 41-53, 1998.  

 

[24]  S. O. Salawu and S. S. Okoya, “On 

criticality for a branched-chain thermal 

reactive-diffusion in a cylinder”, Combustion 

Science and Technology, Vol. 192, pp. 1-16, 

2020  

 

[25]  N. N. Semenov, Some Problems in 

Chemical Kinetics and Reactivity, Pergamon 

Press, London, vol. 2, pp. 1-18, 1959.  

 

[26]  A. R. Shouman, “A very simple yet 

accurate solution to the thermal explosion 

problem”, Journal of Loss Prevention in the 

Process Industries, vol. 11, pp. 383-390, 1998.  

 

[27]  A. R. Shouman and A. B. Donaldson, 

“Prediction of critical conditions for thermal 

explosion problems by a series method”, 

Combustion and Flame, vol. 29, pp. 213-215, 

1977.  

 

[28]  B. Varatharajan and F. A. Williams, 

“Ignition times in the theory of branched-chain 

thermal explosions”, Combustion and Flame, 

vol. 121, no. 3, pp. 551-554, 2000.  

 

[29]  B. Varatharajan and F. A. Williams, 

“Chemical-kinetic descriptions of high-

temperature ignition and detonation of 

acetylene-oxygen-diluent systems”, 

Combustion and Flame, vol. 124, no. 4, pp. 

624-645, 2001.  

 

[30]  Y. B. Zeldovich, G. I. Barenblatt, V. B. 

Librovich and G. M. Makhviladze, The 

mathematical theory of combustion and 

explosions. Consultants Bureau, New York,  

pp. 22-52, 1985. 

 

 

International Journal of Scientific & Engineering Research Volume 13, Issue 4, April-2022 
ISSN 2229-5518 251

IJSER © 2022 
http://www.ijser.org

IJSER




